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Empirical interatomic potentials optimized for phonon

properties

Andrew Rohskopf', Hamid R. Seyf', Kiarash Gordiz', Terumasa Tadano? and Asegun Henry'>*

Molecular dynamics simulations have been extensively used to study phonons and gain insight, but direct comparisons to
experimental data are often difficult, due to a lack of accurate empirical interatomic potentials for different systems. As a result, this
issue has become a major barrier to realizing the promise associated with advanced atomistic-level modeling techniques. Here, we
present a general method for specifically optimizing empirical interatomic potentials from ab initio inputs for the study of phonon
transport properties, thereby resulting in phonon optimized potentials. The method uses a genetic algorithm to directly fit the
empirical parameters of the potential to the key properties that determine whether or not the atomic level dynamics and most

notably the phonon transport are described properly.
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INTRODUCTION

Over the last 25 years, the usage of molecular dynamics (MD)
simulations to study phonons has grown markedly. The reason
MD is a useful tool for studying phonons is because of three
primary advantages/features over other methods: (1) it naturally
includes anharmonicity to full order, (2) it naturally includes the
full atomic level details of the structure (i.e., composition, defects,
boundaries, etc.), and (3) classical MD can access the necessary
time (107°-10%ns) and length scales (1072 to 10°nm) using
today’s high-performance computing hardware."” ? The last point
is a great advantage of classical MD over ab initio MD. However,
given the growing interest and usage of classical MD to study
phonons, there has not been a correspondingly large increase in
the number and fidelity of direct comparisons to experimental
data. This has largely been because of the lack of suitable and
accurate empirical interatomic potentials (EIPs) that can describe
the various interatomic interactions involved in the actual systems
being measured.>™® Here it should be emphasized that the EIP is
the most important aspect of a classical MD simulation, because it
contains all the physics and in essence, a classical MD simulation is
merely a way of sampling the EIP when the atoms reside in the
phase space that the EIP was designed for. Another reason is that
it is difficult to compare MD results directly to experiments
because there is often insufficient detail known about the atomic
level structure of the samples being measured to facilitate
construction of an accurately representative MD supercell. None-
theless, it is because of these challenges that fair and rigorous
comparisons between MD simulation data and experiments are
lacking, and this has stifled the ability for theorists to explain and/
or predict material properties and anomalous behaviors observed
in experiments, which would further our understanding.™'°
Given the reality of these barriers to scientific advancement, the
development of a means by which one can quickly, easily and
accurately create EIPs for the purposes of studying phonon

transport has become a grand challenge for the field. Here, the
notion that one should be able to quickly and easily parameterize
EIPs is important to emphasize, as there have been major
advances over the last 25 years that enable the creation of
accurate EIPs.''™'> Most notably, these advances include the
proliferation of first principles methods, such as density functional
theory (DFT), which can be used to generate data that interatomic
potentials can be fit to reproduce. In the past, many efforts to
produce such EIPs involved modification of the functional form
itself and the properties used for fitting often included experi-
mental measurements of the lattice parameters, elastic constants,
phonon frequencies, and other measureable quantities.'® ' More
recently, efforts to fit EIP parameters have shifted to ab initio data,
which offers a more direct connection to atomistic level quantities,
such as forces, energies, and stresses on supercells, which cannot
be easily determined experimentally.' '® However, the N-
dimensional optimization problem to find the best EIP parameters
is still daunting, and in the past has been partially guided by
chemical/physical intuition into the system of interest. For this
reason, many popular functional forms for EIPs have been modified
for different systems to achieve improved accuracy.'® 2° Conse-
quently, many MD investigations resort to using whatever
parameters can be found somewhere in the literature for an EIP
that has already been coded, and have been applied to the
specific system of interest. Furthermore, this usage of standard
EIPs and parameters from literature often happens regardless of
whether the EIP accurately describes the phonon transport or not,
simply due to a lack of options. Thus, the grand challenge has
been to develop a quick and easy method for creating EIPs that
accurately describe phonons. The emphasis here on the process
being quick and easy, is so that the EIPs can be created and
employed with minimal effort, and the major intellectual
investment can remain focused on the MD and phonon transport
instead of the prerequisite issue of finding a suitable EIP. It should
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be noted that a Taylor expansion of the potential energy surface
offers excellent agreement with phonon dispersion, but has been
shown to be unstable in MD simulations at high temperatures.?' 2
The addition of higher order terms in a Taylor expansion potential
does still not ensure stability at temperatures much higher than
room temperature,?' and it is therefore of interest to parameterize
other functional forms that yield stable MD simulations at high
temperatures. In this article, we describe a methodology and a set
of freely available codes that implement the methodology that
can overcome this barrier of generating what we have termed
phonon optimized potentials (POPs).>

Before explaining the methodology itself it is useful to first
highlight its goals—the basic tenets that underpin it, and several
questions we seek to answer with the first example usage of it,
which is described later:

Tenet 1: Many EIP functional forms are typically overdesigned for
the study of phonons by possessing features and flexibility that
allow for the study of regions of phase space beyond thermal
vibrations around equilibrium. In optimizing the parameters of such
functional forms, we therefore hypothesize that many solutions may
exist to describe the properties of interest, which are associated with
a reduced portion of phase space. Popular EIPs are designed to
describe various configurations of the atoms, and most notably
different atomic coordinations.>*2® However, it is most often the
case that when one seeks to study phonons, all atoms by definition
vibrate around their equilibrium sites*” and the atomic coordination
and configuration are fixed for all atoms throughout the entire MD
simulation.?® We therefore say that such EIPs are often overdesigned
for the study of phonons, as their design goes beyond simple
vibrations about equilibrium. Given this great overdesign of
standard EIPs to describe unnecessary regions of phase space for
the study of phonons, we hypothesize that many parameter sets
exist for such EIPs that describe phonons, but may not describe
other properties. Nonetheless, since the focus herein is to optimize
for phonons, such EIPs would still be considered accurate for the
purposes herein, despite their limited transferability.

Tenet 2: In order for an EIP to be optimized for describing phonons,
the key quantities that must be well described are the total energy
and its derivatives. Taking results from the fluctuation-dissipation
theorem?®® 3° as a basis for describing phonon transport properties,
such as thermal conductivity®® *° and interface conductance,®' this
tenet is based on the idea that one will obtain the correct transport
properties if all of the forces (including correct individual force
components®?) and velocities of the atoms are correct. Also, from the
formalism developed for crystalline thermal conductivity it is known
that if one can correctly compute all the derivatives of the energy
with respect to atomic displacements, one should theoretically
properly describe phonon-phonon interactions.>® Therefore an EIP is
optimized for phonons when it accurately reproduces the derivatives
of the potential energy with respect to the atomic displacements.
Although, in concept one would need an infinite number of
derivatives to be exact, we note that in practice only the energy
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needed for most systems/temperatures, but higher order terms can
be included as deemed necessary* Here, it is also important to
clarify that the goal of POPs is to make EIPs that replicate the results
of ab initio calculations and not necessarily experiments. In this sense
the goal is to make POPs based purely on first principles data, thereby
enabling them with predictive power.

Tenet 3: Assuming the preceding tenet is correct, then one can
set as components of an objective function, the relative error in
energy and its derivatives to assess the viability of a potential to
describe phonon properties. This then provides a universal scale
upon which any EIP can be assessed. For example, one can assess
that a given EIP reproduces the energy of the ab initio model
within 3%, the forces within 5%, the second derivatives within
10% on average, and so on. In this respect one can also invoke
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statistical techniques as well (i.e., standard deviation, root mean
squared etc.) to better assess the EIP accuracy. It may also happen
that a certain functional form is unable to reduce the error in
energy and its derivatives to say below ~40%. Such a functional
form may therefore not be suitable for the system of interest and
it is important that the methodology be able to determine this. It
is therefore a goal of the methodology to enable assessment of
the suitability of the functional form itself.

Tenet 4: A major goal of the POPs approach is to make the
creation of EIPs for a given system easy and quick. Here, the term
“easy” is to imply that minimal input, chemical insight and
management on the part of the user is required and instead the
procedure itself is capable of handling most of the effort.
Furthermore, it is highly desirable to have the approach be built
in such a way, that it does not require new coding on the part of
the user, which inherently requires time for debugging and is a
strong deterrent.

Considering the aforementioned goals/tenets and hypotheses,
several questions arise that we seek to answer herein, namely: (1)
Considering the aforementioned hypothesis in Tenet 1 regarding
the possibility of finding multiple/many sets of parameters that
nearly degenerately minimize the target objective function, it is
not clear if all of such solutions will exhibit commonalities, e.g.,
they can somehow be reduced to a single unique best solution, or
if some are uniquely different, exhibiting drastically different
parameters that somehow still yield similar objective function
values. (2) It is not clear a priori according to Tenet 3 whether
common and standard EIP functional forms will be able to
accurately reproduce ab initio results at all.

Herein we seek to determine if the proposed approach can
actually yield useful POPs that can at least reproduce thermal
conductivity within ~10%. Considering the four Tenets, we seek to
create a generalized user-friendly code and method that can
create POPs with ease. Due to the drastic nonlinearity in the
search space of EIP parameters, we choose to use a genetic
algorithm (GA). More details on the optimization code and
procedure are found in the Methods section and the SI.

RESULTS

With the preceding framework implemented we then tested the
code on the two most popular example systems that are of very
high technological/applications interest, namely crystalline silicon
(c-Si) and crystalline germanium (c-Ge). For many semiconductors
it is well known that long range interactions are important,> yet
the most popular EIPs such as Tersoff,*® Stillinger-Weber (SW),*’
the environment-dependent interatomic potential®* and others
are restricted to first nearest neighbors. Thus, to illustrate the
power of the POPs methodology and to describe ¢-Si and c-Ge
more accurately we fit the ab initio data with a combination of
short ranged and long ranged functional forms and procedures
described in the Methods section and the SI. One of the most
interesting and important outputs of the fitting procedure, which
was executed in less than 1 day using four processors per trial, was
that the various fits yielded >50 uniquely different parameter sets
that all had less than 10% error in forces, energies, and stresses
(Tenet 1). Figure 1 shows the objective function convergence with
generations for all 50 trials in three different EIPs. Three EIPs
considered here were: (1) the SW potential, added to the Born
potential and a long-ranged Coulomb potential, abbreviated
SWBG; (2) the Tersoff potential, added to the Born potential and a
long-ranged Coulomb potential, abbreviated TBC; (3) the Morse
potential added to an explicit three-body angular term, as well as
the Born potential and long-ranged coulomb potential, abbre-
viated M3BC. The results in Fig. 1, highlight that the GA-based
approach was able to quickly exhaust the options associated the
different EIPs (Tenet 3), and although the TBC and M3BC
potentials were able to minimize the objective function
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substantially, the SWBC potential was not. This illustrated that the
SWBC functional form itself is simply incapable of properly
describing the system of interest.

After being optimized, these parameter sets were then tested
against 50 configurations that were randomly displaced by a
maximum of 0.05 A, for which they had not been fit to, and their
error in forces, energies and stresses was <10%. Thus, they can be
substituted for direct DFT calculations to yield the same forces
energies and stresses for an arbitrary configuration to within 10%.
Here, the importance of the nominal value of ~10% error is
illustrated in Fig. 2, as one can visually see the difference between
predicted and fitted forces when the error is 50%, vs. when it is
below 10%. As a point of comparison, consider the differences in
forces for the same configurations using different pseudopoten-
tials, which subsequently result in ~15% standard deviation in
thermal conductivity.®® Thus, errors much greater than 10% are
quite substantial and are larger than the differences one would
expect to observe from improving the ab initio calculations.
Consequently, even though these popular EIPs have been
extensively used to model ¢-Si and c-Ge, the dynamics are not
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Fig. 1 Average Z value convergence with generations. Each line in
this figure represents the average Z value (Eq. 1) per generation,
across all 100 trials performed on the TBC, M3BC, and SWBC
potentials. The following weights were used for each Z component:
wr=0.15, w, = 0.25, w, = 0.2, Wir._» = 0.2, and wj._3 = 0.2. This type of
analysis shows that some functional forms are able to simulta-
neously reproduce certain properties better than others. The SWBC,
which on average only experienced an order of magnitude decrease
from a random guess in Z, could not reproduce all quantities at
once. The TBC and M3BC potentials were able to decrease Z by 3
orders of magnitude from a random guess. The small final
discrepancy between TBC and M3BC is due to the fact that TBC
better reproduced the 3rd order IFCs, which also led to better
thermal conductivity agreement as seen with Figs. 2 and 3
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representative of the real materials. Instead, what has been
modeled is likely a fictitious material that happens to have similar
thermal conductivity, but not the same phonon trajectories as Si
and Ge. For perspective, it is important to realize that we found
that the most common parameter sets used for the Tersoff*® and
SW3’ potentials to describe c-Si result in 35 and 210% error in
forces, respectively.

DISCUSSION

Clearly the 50% level of error in Fig. 2 would lead to incorrect
dynamics and would result in unacceptably large errors in phonon
transport properties. However, conceptually a < 10% error in forces,
might translate to ~10% error in the heat flux operator®? and
therefore errors in thermal conductivity?® and interface conduc-
tance®! on the order of 10% might not be surprising. Nonetheless,
one would also expect that the relationships between force error
and thermal conductivity could be quite nuanced and compli-
cated. Other authors have experienced situations where a potential
can obtain proper phonon dispersion but incorrect thermal
conductivity.*® We note that this stresses the importance of fitting
to both the 2nd and higher order interatomic force constants
(IFCs), since the 2nd order IFCs determine the phonon dispersion,
while the higher order IFCs are also needed to determine the
thermal conductivity. The validity of an approximately 10% error in
force, energy and stress metric, along with <10% errors in IFCs is
consistent with estimations of the thermal conductivity for c-Si
using the Boltzmann transport equation within the relaxation time
approximation as implemented in Alamode*® Figures 3 and 4
show the excellent agreement between the DFT derived thermal
conductivity that was obtained when fitting to energies, forces,
stresses, and 2nd and 3rd order IFCs employing the TBC (<5%
thermal conductivity error) and M3BC (<15% thermal conductivity
error) potentials for c-Si and c-Ge. It is interesting to note here that
the SWBC potential was unable to simultaneously minimize all
parts of the objective function to within 10% error of DFT, as seen
in the poor fit displayed in Fig. 1. The SWBC resulted in unstable
dynamics and/or much larger (>50% errors in IFCs) disagreement
with phonon transport properties, such as dispersion or forces.
These results answer question (1), namely whether or not multiple
parameter sets can be determined that can accurately reproduce
the trajectories that would have been obtained if a DFT MD
calculation could be evaluated at the requisite length and time
scales. We have also answered the question (2) as to whether or
not some common functional forms (e.g., SWBC) simply fail to
simultaneously describe all properties in the objective function, as
shown in Fig. 1.
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Fig. 2 Visual representation of different errors in forces. DFT forces (blue vectors) are shown on the atoms and are compared to EIP forces (red

vectors) for 50%, 10% and 3% errors in forces from left to right
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thermal conductivity + 15% is therefore displayed to show the performance of the M3BC potential for c-Si

For an EIP to be optimized for phonons it is important to fit to
the IFCs. The 2nd order IFCs are more important to include since
the harmonic components of forces usually comprise the
overwhelming majority (>90%) of the forces and energy*'. This
information is not explicitly contained in the total forces and
therefore it is important to separately include the 2nd order
derivatives (e.g., the Hessian matrix) as part of the objective
function, since we have observed cases where it is possible to
have different EIPs reproduce the total forces correctly with
drastically different force components. Phonon dispersion rela-
tions for various POPs are shown in Figs. 5 and 6 for c-Si and c-Ge.
Figure 5a is an interesting case since it shows a qualitative error in
phonon dispersion associated with increasing error in 2nd order
IFCs, thus showing the importance of including the 2nd order IFCs
in fitting to ensure the interactions between atoms are properly
scaled and yield the correct dispersion. Figure 6 shows the fitted
POPs in comparison to the most two most popular potentials used
for silicon—Tersoff'” and SW.3* It is seen that these standard
potentials for silicon greatly overestimate the optical phonon
frequencies as compared to the POPs. The main error in phonon
frequencies with the TBC and M3BC potentials is seen with their
failure to reproduce the flattening of frequencies near the zone
boundaries, due to the inability of the pair potential to reproduce
long range IFCs. This issue, however, has been overcome with
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other analytical functional forms, such as the bond charge
model*? and valence force field model,** ** which assume
different interaction parameters for every pair. The issue of
reproducing long range IFCs is also overcome by interatomic
potentials which model the potential energy surface as dependent
upon a smooth and flexible atomic neighborhood for every atom,
such as the Gaussian approximated potential** and the spectral
neighbor analysis potential.*® Lastly, the issue of dispersion is also
overcome by a Taylor expansion of the potential energy around
the equilibrium positions. Such methods, could in the future be
used in combination with more standard EIPs, to produce even
more accurate POPs, that not only replicate forces, energies,
stresses and thermal conductivities, but also more accurately
reproduce dispersions.

We have developed a framework that consistently produces
reliable POPs out of any suitable EIP or combination of EIPs from
first principles inputs, by employing a GA to find parameters. In
our first demonstration of the methodology we have answered
two important rather fundamental questions regarding EIP fitting:
(1) It was confirmed that common EIPs are overdesigned for the
purposes of exclusively modeling phonon transport and thus
many nearly degenerately performing solutions exist that have
drastically different parameters. This finding is particularly
important, because different solutions could be more transferrable
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Fig. 6 DFT and experimental*? phonon dispersion for Si, along with various POPs. The original Tersoff'” and Stillinger-Weber®” potentials are
shown as yellow and green dotted lines, respectively. a DFT (black), TBC-1 (red), TBC-2 (blue), TBC-3 (gray) and experiments (squares) are shown. b
DFT (black), M3BC-1 (red), M3BC-2 (blue), M3BC-3 (gray) and experiments (squares) are shown

or better/worse at describing other properties/phenomena of
interest and thus it is useful to report all of such solutions, so that
other users can determine the extent to which POPs parameter-
izations can be used for other properties. (2) We have confirmed
that common functional forms for c-Si and c-Ge can in fact
reproduce DFT results within ~10%, and therefore serve as useful
substitutes to enable probing of larger length and time scales
accessible to DFT directly. Furthermore, the GA approach proved
useful at performing sufficiently exhaustive searches through
parameters, such that one can evaluate the suitability of the
functional form itself for a given system.

Future work will involve using POPs for alloys and disordered
systems in order to study thermal transport, since the asymmetry
of these systems render them computationally intractable to be
studied directly by current ab initio methods.>* The creation of
POPs will also allow for the study of thermal transport using MD,
with much greater fidelity, enabling direct comparisons with
experiments, when some of the most general methodologies are
employed.?® 3" Also of critical importance is the fact that the POPs
methodology can be used for fields outside of thermal transport.
For example, functional forms such as REAXFF*” can be used in the
context of the study of chemical reaction kinetics, and common
functional forms used herein can be optimized using the same
algorithm to study defects, grain boundaries, interfaces and
surfaces by first fitting to the most closely accessible DFT
configurations. In this way, it is anticipated that the POPs
methodology can serve as a significant advancement in many
other areas of science/engineering, beyond that of thermal
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transport, since phonons are important for many other non-heat
transfer centered phenomena as well.*®

METHODS

The specific case of creating EIPs for c-Si and c-Ge is discussed here in
detail, because it highlights important features and answers to the
questions/hypotheses outlined in the Tenets. The POPs methodology
described in the following has been implemented in a freely available C++
code*® and can be run massively in parallel. The approach uses a GA to
search for parameters that minimize an objective function representing
some form of error between candidate EIPs and ab initio results. The GA is
a metaheuristic that mimics natural selection to guide the algorithm
towards a solution of a multi-dimensional problem.>°~>2 Gradient based
methods work well for problems with less dimensions and much less non-
linearity. However, for more complex problems with large numbers of
dimensions and strongly non-linear behavior, gradient based methods
easily fail and alternative schemes such as a GA are needed.'® >3 Since the
GA approach itself inherently searches for random perturbations to
potential solutions (i.e.,, via crossover and mutation), one is in practice
guaranteed to exhaustively exploit many local minima if many trials are
run in parallel. Many parallel trials also exhaust all possibilities for a given
functional form, which allows one to determine its suitability for a given
system (Tenet 3). For example, if many GA trials yield a high percentage of
undesirable solutions, it can be said that the functional form may not be an
appropriate candidate for the system of interest. Additional details
associated with the POPs GA are described in the SI.

The code couples with the open source MD software LAMMPS®* as a
calculator for EIPs, and the open source code Alamode™ as a calculator for
IFCs. LAMMPS was selected because it has many standard EIPs already
coded within it as well as many common variants. This prevents users from
having to write new code to try different EIP functional forms, which
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contributes strongly towards making the process “easy” (Tenet 4). Alamode
was selected because it can take as inputs a series of arbitrary atomic
displacements and forces to then compute 2nd, 3rd and 4th order
derivatives of the energy with respect to the atomic displacements, as
required by Tenets 2 and 3 to create a POP.*° Using LAMMPS and Alamode
as calculators for EIP properties, Tenet 3 requires that an objective function
is needed to determine the viability of an EIP compared to reference
values. In general, the objective function consists of different quantities
that are weighted according to their relative importance on a normalized
scale via Eq. 1:

Z:ZWiZh (1)

where each z; generically represents an error between the values produced
by a candidate EIP as compared to the ab initio values, weighted by a
factor w;. In this work, Eq. 1 is a sum of the weighted errors of
Hellman-Feynman forces, energies, stresses, and 2nd and 3rd order IFCs
with weights wy, we, wg, Wir_o, and wj_s, respectively. These quantities are
inspired from the discussion in Tenets 2 and 3, and the stresses were found
to be necessary to ensure crystal stability in MD simulations. The format of
the error z; for forces, energies, stresses, and IFCs is described in the SI.

Lastly the interface with ab initio results has been generalized so that
users can employ any code of interest. The inputs are simply a series of
supercell snapshots containing atomic coordinates, the total energy, the
individual atom total forces, and supercell stresses for configurations with
atoms randomly displaced from equilibrium positions as well as different
volumes. Several previous works have indicated that using random
displacements, or even displacements from ab initio MD trajectories, is
highly effective in capturing anharmonicity.*> >> % Each randomly
displaced configuration contains information about many interatomic
interactions and not just a subset of atoms as is the case for the direct
displacement method.® As a result, it has been found that using random
displacements reduces the search space by providing more valuable
information on anharmonicity and other interactions that result in stability
during a MD simulation.

We selected three popular short ranged EIPs: the SW, Tersoff, and the
Morse®” potential®® as implemented in LAMMPS and we also added the
Buckingham potential and damped-shifted force (DSF) Coulomb poten-
tial®” to Tersoff and SW, and we added the Born-Mayer-Huggins® and DSF
Coulomb EIPs to Morse. Since the Morse potential is two-body in nature,
we added a harmonic three body term of the form E = K(6—6)? to account
for the covalent three body interactions in c-Si and c-Ge. This then yielded
three candidate functional forms: Tersoff + Buckingham + Coulomb (TBC),
Stillinger-Weber + Buckingham + Coulomb (SWBC), and Morse + 3 Body +
Born + Coulomb (M3BC)—all of which are already coded in LAMMPS. The
ranges used for each parameter search and a general rationale for
selecting the range is described in the SI.

These potentials were fit to snapshots of DFT calculated configurations
of 64 atoms in a supercell using the POPs code, whereby it calls LAMMPS
as a library to evaluate the energy and forces of candidate parameter sets,
along with Alamode to determine the 2nd and 3rd order IFCs. The
objective function in Eq. 1 was then minimized with the following relative
weightings: wy=0.15, w, = 0.25, w;=0.2, wjr._, =0.2, and wj;._3=0.2.

Data availability

The opensource POPS code and manual are located at www.pops.gatech.
edu. The parameters for potentials used in this study are attached as
separate files as supplementary material.
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